TerraPower

Technical Publications

Advancing Research

Employees at TerraPower participate in peer-reviewed scientific research. Members of the team have published papers for numerous journals and conferences. Submissions and conference appearances subject TerraPower’s research to the scrutiny of outside experts.

Most of the papers listed below include links to downloadable copies. For those without links, we have listed summaries and full citations; these may be accessed through most university libraries.

  • A Once-Through Fuel Cycle for Fast Reactors

    Presented at the International Conference on Nuclear Engineering in Brussels in July 2009, this paper discusses the high burn-up rate traveling wave reactors can achieve as well as the implications for materials design.

    ​A shift has occurred in design targets for advanced nuclear energy systems in the fast neutron spectrum. No longer is there a desire to extend fissile fuel reserves; rather, scientists are now seeking to develop “cleaner, more efficient, less waste-intensive and more proliferation-resistant” reactor technologies. A phenomenon known as a traveling wave appears to be one solution to this design challenge. A traveling wave reactor (TWR) is a nuclear reactor designed to enable high fuel burn-up even with minimally enriched fuel, creating an opportunity to employ a fast reactor open fuel cycle. The TWR is fueled almost entirely by depleted or natural uranium, requires little initial enrichment and is designed to use this fuel in place as it operates. Our calculations predict that a TWR could achieve burn-ups of ≥20% and may achieve burn-ups of up to 50%. Contributing factors and design implications are discussed.

    K. WEAVER et al., “A Once-Through Fuel Cycle for Fast Reactors,” Proc. 17th Int. Conf. Nuclear Engineering (ICONE), Brussels, Belgium, July 12-16, 2009, No. 17-75381 (2009).

  • Extending the Nuclear Fuel Cycle with Traveling Wave Reactors

    Members of the research team presented this paper at the Global 2009 conference in September 2009 in Paris, where the theme was “The Nuclear Fuel Cycle: Sustainable Options & Industrial Perspectives.” The paper serves as an introduction to the traveling wave reactor technology and the technical challenges that exist in constructing such a reactor.

    ​Nuclear energy currently supplies about 14% of the world’s electricity needs, and its role is projected to expand even further as nations seek to reduce greenhouse gas emissions and other pollutants generated by the use of fossil fuels. In part, the growth of nuclear energy production depends on what advances can be accomplished in the arenas of economic, safety, waste disposal and proliferation resistance of reactors. Potential has been demonstrated in certain classes of advanced fast-neutron reactors, in particular designs known as traveling wave reactors.

    In September 2002, the Generation IV International Forum selected six next-generation nuclear systems, three of which were fast-neutron reactors whose characteristics and benefits are well understood within the nuclear science and engineering community. These fast reactors use uranium much more efficiently than thermal reactors such as light water reactors (LWRs), and early tests proved they can operate as breeders. Some as-yet-unproven work has explored fast reactor designs that consume minor actinides and some of the long-lived fission products in LWR spent fuel. However, one challenge of these designs is they rely on fuel reprocessing, which can have economic and social ramifications.

    Recent designs and calculations have shown the feasibility of a new variety of fast reactor called a traveling wave reactor (TWR), also known as a breed-and-burn reactor or nuclear-burning-wave reactor. These traveling wave reactors would require no fuel reprocessing, use depleted or natural uranium as their primary fuel, require only a small amount of enriched uranium at start-up and never need refueling. For example, a TWR core with a 60-year operating life would require as little as 7% of the separative work units (SWUs) than a comparable LWR. This core longevity depends on the size of the initial charge of the uranium and on the fuel burn-up achieved during reactor operation.

    Current TWR designs include both low- to medium-power (300-MWe) and large (~1,000-MWe) generation plants with core configuration options that yield burn-ups ranging from 20%-50%. Design specifics and technical challenges are discussed.

    K. WEAVER et al., “Extending the Nuclear Fuel Cycle with Traveling-Wave Reactors,” Proc. Global 2009, Paris, France, September 6-11, 2009, No. 9294 (2009).

  • Direct Use of Depleted Uranium as Fuel in a Traveling-Wave Reactor

    A study of burning depleted uranium in a traveling wave reactor, making use of the neutron excess concept.

    R. PETROSKI, “Direct Use of Depleted Uranium as Fuel in a Traveling-Wave Reactor,” presented at Am. Nucl. Soc. Winter Mtg., Washington, D.C., November 15-19, 2009. Copyright 2009 by the American Nuclear Society, La Grange, Illinois.

    Paper Download »

  • Traveling Wave Reactors: A Truly Sustainable and Full-Scale Resource for Global Energy Needs

    Written for presentation at the 2010 International Congress on Advances in Nuclear Power Plants conference in San Diego, this paper explains how traveling wave reactors could help move the global energy economy to a more sustainable footing.

    T. ELLIS et al., “Traveling-Wave Reactors: A Truly Sustainable and Full-Scale Resource for Global Energy Needs,” Proc. Int. Cong. Advances in Nuclear Power Plants (ICAPP), San Diego, California, June 13-17, 2010, No. 10189 (2010).

    Paper Download »

  • Conceptual Design of a 500 MWe Traveling Wave Demonstration Reactor Plant

    A summary of the TerraPower conceptual design of a 500 MWe Traveling Wave Reactor.

    C. AHLFELD et. al., “Conceptual Design of a 500 MWe Traveling Wave Demonstration Reactor Plant,” Proc. Int. Cong. Advances in Nuclear Power Plants (ICAPP), Nice, France, May 2-5, 2011, No. 11199 (2011).

    Paper Download »

  • A One-Dimensional Benchmark Problem of Breed & Burn Reactor

    A simple benchmark problem is specified for analyzing and calibrating neutronics methods when used to model breed-and-burn nuclear reactors.

    Z. XU et al., “A One-Dimensional Benchmark Problem of Breed & Burn Reactor,” Trans. Am. Nucl. Soc., 105, 786-787 (2011). Copyright 2011 by the American Nuclear Society, La Grange, Illinois.

    Paper Download »

  •  1 2 >